Thermal [2 + 2]Cycloaddition of 1,1-Dimethoxyalkenes to Acetylenic Esters

M. Liliana Graziano,* M. Rosaria lesce, Flavio Cermola and Guido Cimminiello Dipartimento di Chimica Organica e Biologica dell'Università di Napoli Federico II, via Mezzocannone 16, 80134 Napoli, Italy

Abstract

[2 + 2] Cycloaddition of the 1,1-dimethoxyalkenes 1 to acetylenic esters, such as dimethyl acetylenedicarboxylate $\mathbf{2 a}$ and methyl propiolate 2b, occurs via 1,4-dipolar intermediates which, trapped by methyl propiolate and tert-butyl alcohol, give functionalized 3,3-dimethoxycyclobutenes 3, synthetic precursors to naturally occurring products and biologically active compounds.

Because of their importance, ${ }^{1}$ in recent years, a great number of syntheses of four-membered carbocycles have been developed. ${ }^{2}$ Of these, $[2+2]$ cycloaddition of alkenes to alkynes provides a simple route to functionalized cyclobutenes. ${ }^{3}$ In an extension of this work, we have investigated the reaction of 1,1-dialkoxyalkenes and acetylenic esters to form dialkyl acetals of functionalized cyclobutenones. The latter compounds which, other than the halogen derivatives, ${ }^{4}$ had been prepared in only a very few cases, ${ }^{5}$ can be considered as synthetic precursors to naturally occurring products and biologically active compounds. ${ }^{6}$ However, it is reported that acetylenic esters lead easily to cyclobutenes only by reaction with enamines. ${ }^{7,8}$ With the other alkenes used, such as mono- or 1,1 -di-alkyl substituted alkenes, ${ }^{9}$ silyl enol ethers ${ }^{10}$ and ketene alkyl silyl acetals ${ }^{11}$ (which are less nucleophilic than enamines) the reaction occurs in the presence of a Lewis acid. So, the mechanism of the cycloaddition of 1,1 -dialkoxyalkenes to acetylenic esters also appeared interesting since the nucleophilicity of the former is intermediate between that of enamines and enol ethers. ${ }^{12}$
The alkenes $\mathbf{1 a - c}$ and the acetylenic esters 2a,b were allowed to react in dry acetonitrile (Scheme 1) at the reaction temperatures and for the times reported in Table 1 (entries 1-6). The reaction mixtures were analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Inspection of the ${ }^{1} \mathrm{H}$ NMR spectra of the mixtures of $1 \mathrm{a}-\mathrm{c}$ with
\dagger As observed in other cycloadditions ${ }^{\mathbf{1 3 . 1 4}}$ the reactivity of the alkene 1 c disubstituted at C-2 is lower than those of the mono- and un-substituted ones $\mathbf{1 a}, \mathbf{b}$ in that the first, even if it has the largest highest occupied molecular orbital (HOMO) energy, has a more symmetric π-electron distribution. ${ }^{15}$ Therefore polymerization ${ }^{13}$ of 1 c occurs to a great extent and the yields of the reaction products 4 c and/or $3 \mathrm{c}, \mathrm{f}$ are the lowest.
dimethyl acetylenedicarboxylate (DMAD) 2a showed the cyclobutenes 3a-c as the sole products. In contrast, in the reaction mixtures of the alkenes $1 \mathbf{1 a - c}$ with methyl propiolate (MP) $\mathbf{2 b}$ the enynes $\mathbf{4 a - c}$ in addition to the cyclobutenes $\mathbf{3 d} \mathbf{- f}$ were also present. Compounds $\mathbf{3 a - f}$ and $\mathbf{4 a - c}$ were isolated by silica gel chromatography with the yields \dagger reported in Table 1; their structures were assigned on the basis of analytical and spectral data (Table 2). In particular the cis configuration of the enynes 4a-c was assigned on the basis of the coupling constant of the vinyl protons ($J_{\text {cis }} 11.5 \mathrm{~Hz}$ for $\mathbf{4 a}$ and $\mathbf{4 b}, 13.0 \mathrm{~Hz}$ for $\mathbf{4 c}$) and by comparison of the chemical shifts of the same protons with those of the products $\mathbf{6 b}, \mathbf{7 b}$ and $\mathbf{8 b}$ (see below). Neither spectroscopic nor chromatographic evidence was obtained for the presence of the trans-isomers of the enynes $4 \mathrm{a}-\mathrm{c}$ in the reaction mixtures. Control experiments showed that the cyclobutenes 3 were stable under the reaction conditions, so excluding the possibility that the enynes 4 were formed through a ring-opening of the cyclobutenes $\mathbf{3}$ by MP.
1,4-Dipolar intermediates have been suggested or evidenced in the reactions between DMAD and enamines ${ }^{7}$ or imino ethers ${ }^{16}$ respectively. We therefore examined the possibility that the reaction of the alkenes 1 and acetylenic esters 2 could occur via an ionic mechanism through the formation of 1,4dipolar intermediates such as 5 , and that the enynes 4 were trapping products of the intermediates from reaction with MP.

5

1

3

4

$$
\begin{array}{ll}
\text { 1a } R^{1}=R^{2}=H & \text { 2a } R^{3}=\mathbf{C O}_{2} \mathbf{M e} \\
\text { b } R^{1}=H, R^{2}=M e & \text { b } R^{3}=\mathbf{H}
\end{array}
$$

$$
\begin{array}{lll}
1 a R^{1}=R^{2}=H & \text { 2a } R^{3}=C_{2} M e & \text { 3a } R^{1}=R^{2}=H, R^{3}=C_{2} M e \\
\text { b } R^{1}=H, R^{2}=M e & \text { b } R^{3}=H & \text { b } R^{1}=H, R^{2}=M e, R^{3}=\mathbf{C O}_{2} M e
\end{array}
$$

$$
\text { 4a } \mathbf{R}^{1}=\mathbf{R}^{2}=\mathbf{H}
$$

$$
\text { c } \mathbf{R}^{1}=\mathbf{R}^{2}=\mathbf{M e} \quad \text { c } \mathbf{R}^{1}=\mathbf{R}^{2}=\mathrm{Me}, \mathbf{R}^{3}=\mathrm{CO}_{2} \mathrm{Me}
$$

$$
\text { b } \mathbf{R}^{1}=\mathbf{H}, \mathbf{R}^{2}=\mathbf{M e}
$$

$$
\text { d } \mathbf{R}^{1}=\mathbf{R}^{2}=\mathbf{R}^{3}=\mathbf{H}
$$

$$
\mathrm{e} \mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}
$$

$$
\mathbf{f} \mathrm{R}^{1}=\mathrm{R}^{2}=\mathbf{M e}, \mathrm{R}^{3}=\mathbf{H}
$$

Scheme $1 \ddagger$
\ddagger The numeration on the structure 4 is used to simplify the reading of the NMR data. Product 4 occurs only for $\mathbf{R}^{\mathbf{3}}=\mathbf{H}$.

Table 1 Reaction of the 1,1-dialkoxyalkenes 1 with the acetylenic esters 2

Entry	Reagents ${ }^{\text {a }}$		Reaction conditions			Product distribution [yields (\%)] ${ }^{\text {d }}$		
	Alkene	Ester	T/ ${ }^{\circ} \mathrm{C}$	$t / \mathrm{h}^{\text {b }}$	Solvent ${ }^{\text {c }}$			
1	1a	2a	18-22	3	MeCN	3a (53)		
2	1b	2a	18-22	3	MeCN	3b (58)		
3	1c	2a	60	24	MeCN	3c (30)		
4	1a	2b	50	7	MeCN	3d (20)	4a (28)	
5	1b	2b	50	7	MeCN	3e (28)	4b (23)	
6	1c	2b	60	96	MeCN	3 f (20)	4 c (8)	
7	1b	2b	50	24	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	3e (35)	4b (14)	
8	1b	2b	50	$96{ }^{\text {e }}$	CCl_{4}	3e(20)	4b (trace)	
9	1b	2a	18-22	4	$\mathrm{Bu}^{\text { }} \mathrm{OH}$	3b (55)		6a (16) ${ }^{f}$
10	1b	2b	50	8	$\mathrm{Bu}^{\text {t }} \mathrm{OH}$	3e (14)	4b (20)	6b (21) ${ }^{\text {g }}$

${ }^{a}$ Molar ratio $1: 2=1.5: 1 .{ }^{b}$ Time required for the completion of the reaction (TLC or IR). ${ }^{c}$ Solution of $2\left(1 \mathrm{~mol} \mathrm{dm}^{-3}\right) .{ }^{d}$ Deduced on the basis of the ${ }^{1}$ H NMR spectrum of the reaction mixture, confirmed by silica gel chromatography (except for 6) and calculated with respect to the ester 2. ${ }^{e}$ At this time the ester $\mathbf{2 b}$ was also present in the reaction mixture, but the alkene $\mathbf{1 b}$ was polymerized to a large degree (${ }^{1} \mathrm{H}$ NMR). ${ }^{\boldsymbol{\rho}} \mathrm{Obtained} \mathrm{by}$ the sum of the yields of the esters $7 a$ and $8 a$ (see Experimental section). ${ }^{\boldsymbol{\theta}}$ Obtained by the sum of the yields of the esters $\mathbf{7 b}$ and $\mathbf{8 b}$ (see Experimental section).

Scheme 2* Reagents: i, $\mathrm{Bu}^{\mathrm{t}} \mathrm{OH}$ (solvent); ii, SiO_{2} chromatography

* The numeration on the structures $6-8$ is used to simplify the reading of the NMR data.

Scheme 3
Thus, 1b and MP were allowed to react in apolar solvents such as dichloromethane and carbon tetrachloride under conditions identical with those used with acetonitrile as the polar solvent. The results obtained (Table 1, entries 7 and 8)
show a correlation between solvent polarity and both reaction time and product distribution. \dagger In fact in contrast to the reaction in acetonitrile (entry 5), in dichloromethane the reaction was complete after 24 h and the cyclobutene 3 e and the enyne 4b were formed in $c a$. 5:1 molar ratio ($c a .2 .5: 1$ in acetonitrile). In carbon tetrachloride the reaction was so slow that it was not run to completion and, in addition to the cyclobutene $\mathbf{3 e}$, only traces of the enyne $\mathbf{4 b}$ were formed.

These results support the occurrence of an ionic mechanism which was confirmed by suitable trapping experiments. In fact, the alkene 1b reacted with DMAD or MP in tert-butyl alcohol, \ddagger to give the ortho esters $\mathbf{6 a}, \mathrm{b}$ as trapping products of 1,4 -dipolar intermediates (such as 5) by the alcohol, in addition to the products obtained with acetonitrile as the solvent (Scheme 2). Temperatures, times§ and percentage yields of the reaction products are reported in Table 1 (entries 9 and 10). Quantification was made on the basis of the ${ }^{1} \mathrm{H}$ NMR spectra of the reaction mixtures and confirmed by chromatography on silica gel (except for the ortho esters 6a,b). The latter were not isolated by chromatography since they underwent quantitative hydrolysis partly to tert-butyl esters 7a,b and partly to methyl esters 8a,b on contact with the adsorbents. Therefore, the structures of the ortho esters $\mathbf{6 a , b}$ were assigned on the basis of the spectral data (Table 2) obtained by ${ }^{1} \mathrm{H}$ NMR spectra of the reaction mixtures, the signals of the known products being subtracted. The yields of $\mathbf{6 a , b}$, deduced from these spectra, were confirmed from the sum of those of the esters 7a,b and 8a,b, the latter being obtained by chromatography of the crude reaction mixtures. The spectral and analytical data for the esters 7a,b and $\mathbf{8 a}, \mathbf{b} \boldsymbol{T}$ are reported in Table 2. The trans configuration of the
\dagger An accurate study of the solvent effect is very difficult since the alkenes 1 are sensitive to hydrolysis and also tend to polymerize at room temperature. ${ }^{13}$
\ddagger Control experiments showed that tert-butyl alcohol combines neither with the reagents nor with the reaction products. Only the cyclobutene 3 e undergoes partial polymerization after long reaction times. However, in the time required for the completion of the reaction, the polymerization of 3e occurs to only a small extent.
§ It is to be noted that the rate of the reactions of $\mathbf{1 b}$ with $\mathbf{2}$ in tert-butyl alcohol is very similar to that in more polar acetonitrile ${ }^{17}$ (Table 1), suggesting that the 1,4-dipolar intermediates are stabilized by hydrogen bonding with the protic solvent. Nevertheless, the trapping ability of tert-butyl alcohol is smaller than that of MP (Table 1), probably because the steric hindrance of the tert-butoxy group makes the formation of the $\mathrm{C}-\mathrm{O}$ bond at the cationic site of the intermediates difficult.
I Compound 8 b is known, ${ }^{18}$ but its analytical and spectral data are not reported.

Table 2 Physical, spectral and analytical data for the products derived from the reaction between the alkenes 1 and the acetylenic esters 2

Compound ${ }^{\text {a }}$	$v_{\text {max }}\left(\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1}$	$\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)(\mathrm{J} / \mathrm{Hz})$
$3 a^{\text {b }}$	1723, 1651	$\begin{aligned} & 2.77\left(2 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{2}\right), 3.37(6 \mathrm{H}, \mathrm{~s}, 2 \times \mathrm{OMe}), 3.77 \\ & \left(6 \mathrm{H}, \mathrm{~s}, 2 \times \mathrm{CO}_{2} \mathrm{Me}\right) \end{aligned}$
$3 \mathbf{b}^{\text {c }}$	1735,1651	1.24 ($3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{Me}$), $3.20(1 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CH}$), 3.36 and $3.46(6 \mathrm{H}, 2 \times \mathrm{s}, 2 \times \mathrm{OMe})$, $3.82(6 \mathrm{H}$, s, $2 \times \mathrm{CO}_{2} \mathrm{Me}$)
$3 \mathrm{c}^{\text {d }}$	1735, 1653	$1.31(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me}), 3.40(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe})$, $3.80\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CO}_{2} \mathrm{Me}\right)$
$3 \mathrm{~d}^{e}$	1719, 1610	$\begin{aligned} & 2.65\left(2 \mathrm{H}, \mathrm{~d}, J 1.2, \mathrm{CH}_{2}\right), 3.43(6 \mathrm{H}, \mathrm{~s}, 2 \times \mathrm{OMe}), \\ & 3.76\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CO}_{2} \mathrm{Me}\right), 7.16(1 \mathrm{H}, \mathrm{t}, J 1.2, \mathrm{CH}) \end{aligned}$
$3 \mathrm{e}^{f}$	1719, 1607	1.15 ($3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{Me}$), 2.99 ($1 \mathrm{H}, \mathrm{dq}, J 7.3,1.4$, $\mathrm{CH}), 3.37$ and $3.48(6 \mathrm{H}, 2 \times \mathrm{s}, 2 \times \mathrm{OMe}), 3.76$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$), $7.11(1 \mathrm{H}, \mathrm{d}, J 1.4, \mathrm{CH}$)
$3 f^{g}$	1719, 1623	$\begin{aligned} & 1.22(6 \mathrm{H}, \mathrm{~s}, 2 \times \mathrm{Me}), 3.41(6 \mathrm{H}, \mathrm{~s}, 2 \times \mathrm{OMe}), \\ & 3.75\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CO}_{2} \mathrm{Me}\right), 7.05(1 \mathrm{H}, \mathrm{~s}, \mathrm{CH}) \end{aligned}$
$4 \mathbf{a}^{\text {n }}$	2243, 1720, 1645	$\begin{aligned} & 3.32\left(2 \mathrm{H}, \mathrm{dd}, J 6.8,1.9,4-\mathrm{H}_{2}\right), 3.36(6 \mathrm{H}, \mathrm{~s} \text {, } \\ & 2 \times \mathrm{OMe}), 3.72 \text { and } 3.79(6 \mathrm{H}, 2 \times \mathrm{s}, 2 \times \\ & \left.\mathrm{CO}_{2} \mathrm{Me}\right), 5.94(1 \mathrm{H}, \mathrm{dt}, J 11.7,1.9,2-\mathrm{H}), 6.37 \\ & (1 \mathrm{H}, \mathrm{dt}, J 11.7,6.8,3-\mathrm{H}) \end{aligned}$
$4 b^{i}$	2243, 1718, 1647	$1.03(3 \mathrm{H}, \mathrm{d}, J 6.9,4-\mathrm{Me}), 3.32$ and $3.36(6 \mathrm{H}$, $2 \times \mathrm{s}, 2 \times \mathrm{OMe}$), 3.72 and $3.81(6 \mathrm{H}, 2 \times \mathrm{s}, 2 \times$ $\mathrm{CO}_{2} \mathrm{Me}$), 4.10 ($1 \mathrm{H}, \mathrm{ddq}, J 6.9,10.1,1.1,4-\mathrm{H}$), 5.85 (1 H , dd, $J 11.5,1.1,2-\mathrm{H}$), 6.34 ($1 \mathrm{H}, \mathrm{dd}, J$ $11.5,10.1,3-\mathrm{H})$
$4 c^{j}$	2240, 1719, 1638	$1.37(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me}), 3.56(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe})$, 3.71 and $3.83\left(6 \mathrm{H}, 2 \times \mathrm{s}, 2 \times \mathrm{CO}_{2} \mathrm{Me}\right), 5.77$ $(1 \mathrm{H}, \mathrm{d}, J 13.3,2-\mathrm{H}), 6.45(1 \mathrm{H}, \mathrm{d}, J 13.3,3-\mathrm{H})$
6a		1.34 (s, CMe_{3}), 1.33, (d, J 7.3, 4-Me), 3.26 and $3.34(2 \times \mathrm{s}, 2 \times \mathrm{OMe}), 3.74\left(\mathrm{~s}, 2 \times \mathrm{CO}_{2} \mathrm{Me}\right.$), $4.45(\mathrm{q}, J 7.3,4-\mathrm{H}), 6.22(\mathrm{~s}, 2-\mathrm{H})^{k}$
6b		1.13 (d, $J 7.1,4-\mathrm{Me}$), 1.33 ($\mathrm{s}, \mathrm{CMe}_{3}$), 3.28 and 3.33 ($2 \times \mathrm{s}, 2 \times \mathrm{OMe}$), $3.70\left(\mathrm{~s}, \mathrm{CO}_{2} \mathbf{M e}\right.$), 4.25 (ddq, J 7.1, 1.1, 10.1, 4-H), 5.73 (dd, J, 11.5, 1.1, $2-\mathrm{H}), 6.46$ (dd, J $11.5,10.1,3-\mathrm{H})^{*}$
$7 \mathbf{a}^{1}$	1724, 1646	1.39 (d, J 7.1, 4-Me) and 1.41 ($\mathrm{s}, \mathrm{CMe}_{3}$) (together $12 \mathrm{H}), 3.79$ and $3.80\left(6 \mathrm{H}, 2 \times \mathrm{s}, 2 \times \mathrm{CO}_{2} \mathrm{Me}\right)$, $4.65(1 \mathrm{H}, \mathrm{q}, J 7.1,4-\mathrm{H}), 6.78(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$
$7{ }^{\text {m }}$	1719, 1650	1.29 ($3 \mathrm{H}, \mathrm{d}, J 7.3,4-\mathrm{Me}$) 1.44 ($9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}$) 3.72 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.36 ($1 \mathrm{H}, \mathrm{ddq}, J 7.3,9.6,1.1$, $4-\mathrm{H}), 5.83(1 \mathrm{H}, \mathrm{dd}, J 11.6,1.1,2-\mathrm{H}), 6.35(1 \mathrm{H}$, dd, $J 11.6,9.6,3-\mathrm{H})$
$8 \mathbf{a}^{n}$	1724, 1646	$\begin{aligned} & 1.42(3 \mathrm{H}, \mathrm{~d}, J 7.1,4-\mathrm{Me}), 3.66,3.79 \text { and } 3.81 \\ & (9 \mathrm{H}, 3 \times \mathrm{s}, 3 \times \mathrm{OMe}), 4.74(1 \mathrm{H}, \mathrm{q}, J 7.1,4-\mathrm{H}) \text {, } \\ & 6.85(1 \mathrm{H}, \mathrm{~s}, 2-\mathrm{H}) \end{aligned}$
$8 \mathrm{~b}^{\text {o }}$	1719, 1647	1.33 ($3 \mathrm{H}, \mathrm{d}, J 7.1,4-\mathrm{Me}$), 3.70 and $3.73(6 \mathrm{H}$, $2 \times \mathrm{s}, 2 \times \mathrm{OMe}), 4.53(1 \mathrm{H}, \mathrm{ddq}, J 7.1,9.7,1.1$, $4-\mathrm{H}), 5.86$ ($1 \mathrm{H}, \mathrm{dd}, J 11.4,1.1,2-\mathrm{H}), 6.35$ (1 H , dd, $J 11.4,9.7,3-\mathrm{H})$

$\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$

40.7 (t, C-4), 51.4 and $51.8(2 \times \mathrm{q}, 4 \times \mathrm{OMe}) 101.1$ (s, C-3), 141.4 and $143.5(2 \times \mathrm{s}, \mathrm{C}-1, \mathrm{C}-2), 160.7$ and $162.0\left(2 \times \mathrm{s}, 2 \times \mathrm{CO}_{2}\right)$
12.3 (q, 4-Me), 48.0 (d, C-4), 51.4, 51.7, 51.8 and $51.9(4 \times \mathrm{q}, 4 \times \mathrm{OMe}), 102.0(\mathrm{~s}, \mathrm{C}-3), 139.9$ and $148.1(2 \times \mathrm{s}, \mathrm{C}-1, \mathrm{C}-2), 161.1$ and $162.1(2 \times \mathrm{s}$, $2 \times \mathrm{CO}_{2}$)
$40.8(\mathrm{t}, \mathrm{C}-4), 50.6,51.4$ and $51.7(3 \times \mathrm{q}, 3 \times \mathrm{OMe})$, 103.7 (s, C-3), 140.6 (s, C-2), 149.3 (d, C-1), 161.1 (s, CO_{2})
13.1 (q, 4-Me), 46.9 (d, C-4), 50.9, 51.1 and 51.4 ($3 \times \mathrm{q}, 3 \times \mathrm{OMe}$), 103.7 (s, C-3), 138.7 ($\mathrm{s}, \mathrm{C}-2$), 153.9 (d, C-1), 161.3 (s, CO_{2})
38.6 (t, C-4), 51.2, 51.7, 51.9 and $52.9(4 \times \mathrm{q}$, $4 \times \mathrm{OMe}), 82.2$ and $90.4(2 \times \mathrm{s}, \mathrm{C}-6$ and C-7), 98.3 (s, C-5), 121.8 (d, C-2), 142.0 (d, C-3), 153.1 (s, C-8), 164.4 (s, C-1)
15.5 (q, 4-Me), 38.4 (d, C-4), 50.6, 50.7, 51.1 and 52.9 ($4 \times \mathrm{q}, 4 \times \mathrm{OMe}$), 81.4 ($\mathrm{s}, \mathrm{C}-6, \mathrm{C}-7$), 101.6 (s, $\mathrm{C}-5$), 119.7 (d, C-2), 148.8 (d, C-3), 153.2 (s, C-8), 166.4 (s, C-1)
$21.0\left(\mathrm{q}, 4-\mathrm{Me}_{2}\right), 48.4$ (s, C-4), 51.3 and $53.0(2 \times \mathrm{q}$, $2 \times \mathrm{OMe}), 55.1(\mathrm{q}, 2 \times \mathrm{OMe}), 80.1$ and $81.0(2 \times \mathrm{s}$, C-6, C-7), 105.1 (s, C-5), 119.3 (d, C-2), 149.4 (d, C-3), 152.9 (s, C-8), 166.9 (s, C-1)
15.7 (q, 4-Me), 27.8 (q, CMe 3) 39.1 (d, C-4), 51.8 and $52.3(2 \times \mathrm{q}, 2 \times \mathrm{OMe}), 84.8\left(\mathrm{~s}, \mathrm{CMe}_{3}\right), 126.4$ (d, C-2), 147.1 (s, C-3), 165.7, 166.2 and 171.5 $\left(3 \times \mathrm{s}, 3 \times \mathrm{CO}_{2}\right)$
17.8 (q, 4-Me), 27.9 (q, CMe_{3}) 39.8 (d, C-4), 51.1 (q, OMe), 80.6 (s, CMe_{3}), 119.5 (d, C-2), 147.9 (d, C-3), 166.2 and $173.2\left(2 \times \mathrm{s}, 2 \times \mathrm{CO}_{2}\right)$
15.6 (q, 4-Me), 37.9 (d, C-4) 51.8, 51.9 and 52.5 $(3 \times \mathrm{q}, 3 \times \mathrm{OMe}), 127.0(\mathrm{~d}, \mathrm{C}-2), 146.2(\mathrm{~s}, \mathrm{C}-3)$, $165.5,165.8$ and $172.9\left(3 \times \mathrm{s}, 3 \times \mathrm{CO}_{2}\right)$
17.7 ($\mathrm{q}, 4-\mathrm{Me}$), 38.6 (d, C-4), 51.2 and $51.9(2 \times \mathrm{q}$, $2 \times \mathrm{OMe}), 120.0(\mathrm{~d}, \mathrm{C}-2), 147.1(\mathrm{~d}, \mathrm{C}-3), 166.1$ and $174.4\left(2 \times \mathrm{s}, 2 \times \mathrm{CO}_{2}\right)$
${ }^{a}$ All compounds were obtained as oils. ${ }^{b}$ (Found: $\mathrm{C}, 52.3 ; \mathrm{H}, 6.2 . \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{6}$ requires $\mathrm{C}, 52.17, \mathrm{H}, 6.13 \%$). ${ }^{c}$ (Found: $\mathrm{C}, 54.2 ; \mathrm{H}, 6.5, \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{6}$ requires C, $54.09 ; \mathrm{H}, 6.60 \%$). ${ }^{d}$ (Found: C, $56.6 ; \mathrm{H}, 5.5 . \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{6}$ requires $\mathrm{C}, 56.69 ; \mathrm{H}, 5.55 \%$). ${ }^{e}$ (Found: C, $55.9 ; \mathrm{H}, 7.1 . \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{4}$ requires C , $55.80 ; \mathrm{H}, 7.03 \%$). ${ }^{f}$ (Found: C, 58.1 ; H, 7.6. $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{4}$ requires $\mathrm{C}, 58.05 ; \mathrm{H}, 7.58 \%$). ${ }^{\boldsymbol{g}}$ (Found: $\mathrm{C}, 61.3 ; \mathrm{H}, 6.2 . \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$ requires $\mathrm{C}, 61.21 ; \mathrm{H}$, 6.17%). ${ }^{h}$ (Found: C, 56.3; H, 6.2. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{6}$ requires $\mathrm{C}, 56.24 ; \mathrm{H}, 6.29 \%$). ${ }^{i}$ (Found: C, 57.9; H, 6.7. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{6}$ requires $\mathrm{C}, 57.77$; $\mathrm{H}, 6.71 \%$). ${ }^{j}$ (Found: $\mathrm{C}, 59.2 ; \mathrm{H}, 7.1 . \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{6}$ requires $\mathrm{C}, 59.14 ; \mathrm{H}, 7.09 \%$). ${ }^{\mathrm{k}}$ It was not possible to integrate the signals since the product was mixed with other compounds. ${ }^{l}$ (Found: C, 57.4; H, 7.3. $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{6}$ requires $\mathrm{C}, 57.34 ; \mathrm{H}, 7.40 \%$). ${ }^{m}$ (Found: C, 61.7; H, 8.4. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{4}$ requires $\mathrm{C}, 61.66 ; \mathrm{H}$, 8.47%). ${ }^{n}$ (Found: $\mathrm{C}, 52.2 ; \mathrm{H}, 6.2 . \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{6}$ requires $\mathrm{C}, 52.17 ; \mathrm{H}, 6.13 \%$). ${ }^{\circ}$ Known product, ${ }^{18}$ but analytical and spectral data are unreported (Found: C, 55.7; H, 7.1. $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{4}$ requires C, $55.80 ; \mathrm{H}, 7.03 \%$).
products 6a, 7a and 8a was assigned on the basis of the chemical shifts of the vinyl protons which experience a large deshielding effect due to the methoxycarbonyl group linked at the adjacent unsaturated carbon on the same side. ${ }^{19}$ The cis configuration of $\mathbf{6 b}, 7 \mathrm{~b}$ and 8 b was assigned on the basis of the coupling constant of the vinyl protons ($J_{\mathrm{cis}} 11.7 \mathrm{~Hz}$) and confirmed by comparison of the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 b}$ with that of its trans-isomer. ${ }^{20}$ Neither spectroscopic nor chromatographic evidence was obtained for the presence, in either reaction mixture, of the stereoisomers of the ortho esters $\mathbf{6 a , b}$ and the esters $7 \mathbf{7 a}, \mathbf{b}$ and $\mathbf{8 a}, \mathbf{b}$.

All the results obtained can be rationalized in terms of the generally accepted mechanism for thermal cycloaddition of an electron-rich to electron-poor alkene. ${ }^{21, *}$ Thus, 1,1-dialkoxyalkenes 1 react with the alkynes 2 , to give the cyclobutenes 3 , via 1,4 -dipolar intermediates such as 5 . These 1,4 -dipoles, in which the negative charge is delocalized on the methoxycarbonyl

[^0] theoretical criteria used for double bonds are the same for triple bonds. ${ }^{3}$
group, may be represented as a mixture of the two geometric isomers \mathbf{A} and \mathbf{B} in equilibrium via the allenic structure \mathbf{C}^{22} (Scheme 3). Although cyclobutene $\mathbf{3}$ formation may only occur via \mathbf{B}, the stereochemistry of the trapping products 4 and 6 shows that only \mathbf{A} is intercepted. In fact, since \mathbf{B} is well orientated ${ }^{23}$ for cyclization this occurs faster than the trapping reactions, and since \mathbf{A} into \mathbf{B} isomerization is slow the lifetime of A is long enough for it to be trapped. The polarity of the solvent in which the reaction is performed influences the lifetime of \mathbf{A} and, consequently, the ratio of cyclobutene to enyne, 3:4. Thus, the ratio of cyclobutene to enyne $\mathbf{3 e}: \mathbf{4 b}$ in apolar dichloromethane is higher than in polar acetonitrile (Table 1), showing that in the former solvent the lifetime of \mathbf{A} decreases owing to its poor solvation.

Experimental

IR spectra were recorded on a Perkin-Elmer 1760 X-FT spectrophotometer using chloroform as solvent. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Varian XL-200 spectrometer using deuteriochloroform as solvent and tetramethylsilane as internal standard. The solvents used in the reactions were dried. Silica gel [$0.005-0.20$ (Merck) $]$ and light petroleum (b.p. $40-70^{\circ} \mathrm{C}$) were used for column chromatography. TLC was carried out on silica gel K6F (Whatman).

1,1-Dimethoxyethene 1a, ${ }^{24}$ 1,1-dimethoxyprop-1-ene $\mathbf{1 b}^{25}$ and 1,1 -dimethoxy-2-methylprop-1-ene $\mathbf{1 c}^{\mathbf{2 6}}$ were prepared as reported.

Reaction of 1,1-Dimethoxyalkenes 1 with DMAD 2a.Solutions of DMAD ($1 \mathrm{~mol} \mathrm{dm}^{-3} ; 5 \mathrm{mmol}$) in acetonitrile were added to the alkenes $1(7.5 \mathrm{mmol})$ and the resulting mixtures were kept at the temperatures reported in Table 1 (entries 1-3) under strictly anhydrous conditions. The solutions were monitored for the disappearance of DMAD by TLC (UV, chloroform). When the reactions were complete (Table 1), the solvent was removed at reduced pressure and the ${ }^{1} \mathrm{H}$ NMR spectra of the residues showed only the presence of the dimethyl 3,3-dimethoxycyclobutene-1,2-dicarboxylates 3a-c in addition to polymeric material derived from the alkenes $\mathbf{1}$. The mixtures were chromatographed on silica gel (30 g). Elution with light petroleum-diethyl ether ($9: 1, \mathrm{v} / \mathrm{v}$) and diethyl ether gave the cyclobutenes $3 \mathrm{a}-\mathrm{c}$ and polymeric material successively. The yields of 3a-c are reported in Table 1 and the physical, analytical and spectral data in Table 2.

Solutions of the cyclobutenes $3 \mathrm{a}-\mathrm{c}\left(1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 2 \mathrm{mmol}\right)$ in acetonitrile when kept at the temperatures and for the times used for the parent alkenes 1a-c (Table 1, entries 1-3) were recovered quantitatively.

Reactions of the Alkenes $\mathbf{1}$ with MP 2b.-Solutions of MP ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 5 \mathrm{mmol}$) in acetonitrile were added to the alkenes 1 (7.5 mmol) and the resulting mixtures were kept at the temperatures reported in Table 1 (entries 4-6) under strictly anhydrous conditions. Periodically the solutions were monitored by IR spectroscopy for the disappearance of MP (CH stretching at $3300 \mathrm{~cm}^{-1}$). When the reactions were complete (Table 1), the solvent was removed under reduced pressure and the ${ }^{1} \mathrm{H}$ NMR spectrum of the residues showed the presence of the methyl 3,3-dimethoxycyclobutene-2-carboxylates 3d-f and the dimethyl 5,5-dimethoxyoct-2-en-6-yne-1,8-dioates 4a-c (in ca. molar ratio 1.5:1 for 1a; 2.5:1 for $\mathbf{1 b}$; 5:1 for $\mathbf{1 c}$), in addition to polymeric material derived from the alkenes 1 . The mixtures were chromatographed on silica gel (30 g). Elution with benzene and diethyl ether gave the enynes $\mathbf{4 a - c}$, the cyclobutenes $\mathbf{3 d - f}$ and polymeric material successively. The yields of $\mathbf{3 d}-\mathbf{f}$ and $\mathbf{4 a - c}$ are reported in Table 1 and the physical, analytical and spectral data in Table 2.

When solutions of MP ($1 \mathrm{~mol} \mathrm{dm}^{-3} ; 1 \mathrm{mmol}$) in acetonitrile were added to the cyclobutenes $\mathbf{3 d}-\mathbf{f}(1 \mathrm{mmol})$ and the resulting mixtures were kept at the temperatures and for the times used for the related alkenes 1a-c (Table 1, entries 4-6), the cyclobutenes 3d-f were recovered quantitatively.

Reaction of the Alkene 1b with MP 2b in Apolar Solvents.The reactions of 1 b with MP in dichloromethane and in carbon tetrachloride were carried out following the conditions used when acetonitrile was the solvent. When the reaction in dichloromethane was complete (Table 1, entry 7), the solvent was removed under reduced pressure and the ${ }^{1} \mathrm{H}$ NMR spectrum of the residue showed the presence of the cyclobutene 3e and the enyne 4 b in $c a .5: 1$ molar ratio in addition to polymeric material derived from the alkene 1b. Silica gel chromatography carried out as previously described gave 3 e and 4 b with the yields reported in Table 1 (entry 7).
The reaction in carbon tetrachloride was stopped after 4 days (entry 8). The ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture recorded with a Varian EM-360 spectrometer in carbon tetrachloride showed the presence of MP, small amounts of the alkene 1 lb , the cyclobutene 3 e , trace amounts of the enyne $\mathbf{4 b}$ and polymeric material derived from the alkene 1 b . The products $1 \mathrm{~b}, \mathbf{2 b}, 3 \mathrm{e}$ and $4 b$ were identified by comparison of the ${ }^{1} \mathrm{H}$ NMR spectrum of this mixture with those of the pure products recorded in carbon tetrachloride. Thus, silica gel chromatography carried out as above described gave the cyclobutene 3 e with the yields reported in Table 1 (entry 8), in addition to some amounts of the enyne 4b and polymeric material.

Reaction of the Alkene 1b with DMAD 2a in tert-Butyl Alcohol.-The reaction between 1b and DMAD in tert-butyl alcohol was performed under the conditions used when acetonitrile was the solvent. When the reaction was complete (Table 1, entry 9), the solvent was removed under reduced pressure and the ${ }^{1} \mathrm{H}$ NMR spectrum of the residue showed the presence of the cyclobutene 3b and methyl 5-tert-butoxy-5,5-dimethoxy-3-methoxycarbonyl-4-methylpent-2-enoate 6a in addition to polymeric material derived from the alkene $\mathbf{1 b}$. All attempts to isolate the ortho ester $\mathbf{6 a}$ by chromatography failed since it underwent hydrolysis to the esters 5 -tert-butyl 1 methyl 3-methoxycarbonyl-4-methylpent-2-ene-1,5-dioate 7a and dimethyl 3-methoxycarbonyl-4-methylpent-2-ene-1,5-dioate 8a on contact with the adsorbents. The ${ }^{1} \mathrm{H}$ NMR data of 6 a reported in Table 2 were obtained from those of the reaction mixture, the signals of $\mathbf{3 b}$ being subtracted. Slow chromatography of this mixture on silica gel (30 g) (eluent benzene) gave the tert-butyl ester 7a (4%), methyl ester $8 \mathrm{aa}(12 \%$) (both derived from the hydrolysis of 6a) and cyclobutene 3b successively. Subsequent elution with diethyl ether gave polymeric material. The yields of $\mathbf{3 b}$ and $\mathbf{6 a}$ (the latter obtained by the sum of the esters 7a and 8a) are reported in Table 1 (entry 9). The physical, spectral and analytical data of 7a and 8a are reported in Table 2.

When a solution of the cyclobutene $\mathbf{3 b}\left(1 \mathrm{~mol} \mathrm{dm}^{-3} ; 1 \mathrm{mmol}\right)$ in tert-butyl alcohol was kept at room temp, after 4 h it was recovered quantitatively.

Reaction of the Alkene 1b with MP 2b in tert-Butyl Alcohol.The reaction of the alkene $\mathbf{1 b}$ and MP in tert-butyl alcohol was carried out under the conditions used when acetonitrile was the solvent. When the reaction was complete (Table 1, entry 10), the solvent was removed immediately under reduced pressure and the ${ }^{1} \mathrm{H}$ NMR spectrum showed the presence of the methyl 5 -tert-butoxy-5,5-dimethoxy-4-methylpent-2-enoate 6b, enyne 4b and cyclobutene 3e, in addition to polymeric material derived from the alkene 1b. All attempts to isolate the ortho ester $6 \mathbf{b}$ by chromatography failed since it underwent hydrolysis to 5 -tert-
butyl 1-methyl 4-methylpent-2-ene-1,5-dioate 7b and dimethyl 4-methylpent-2-ene-1,5-dioate 8 b on contact with the adsorbents. The ${ }^{1} \mathbf{H}$ NMR data of $\mathbf{6 b}$ (Table 2) were deduced from those of the reaction mixture, the signals of 3 e and $\mathbf{4 b}$ being subtracted. Slow chromatography of this mixture on silica gel (30 g) (eluent benzene) gave the tert-butyl ester $\mathbf{7 b}(9 \%)$, the methyl ester 8b (12%), the enyne $\mathbf{4 b}$ and the cyclobutene 3 e . Subsequent elution with diethyl ether gave polymeric material. The yields of $\mathbf{3 e}, \mathbf{4 b}$ and $\mathbf{6 b}$ (the latter obtained by the sum of those of the esters $\mathbf{7 b}$ and 8b) are reported in Table 1. The physical, spectral and analytical data of esters $\mathbf{7 b}$ and $\mathbf{8 b}$ are reported in Table 2.

A solution of the cyclobutene $3 \mathrm{e}\left(1 \mathrm{~mol} \mathrm{dm}^{-3} ; 1 \mathrm{mmol}\right)$ in tertbutyl alcohol was kept at $50^{\circ} \mathrm{C}$ for 8 h after which solvent was removed under reduced pressure; the ${ }^{1} \mathrm{H}$ NMR spectrum of the residue showed only the presence of 3 e in addition to polymeric material. Chromatography on silica gel (eluent benzene and diethyl ether) gave 3 e (80%) and polymeric material successively. When the same treatment was performed on the enyne 4b, the latter was recovered quantitatively.

Acknowledgements

This work was financially supported by CNR (Rome) and by Ministero dell'Università e della Ricerca Scientifica e Tecnologica (Rome). The NMR spectra were taken at the Centro di Metodologie Chimico-Fisiche, Universita' di Napoli Federico II (Mr. V. Piscopo).

References

1 H. N. C. Wong, K. L. Lau and K. F. Tam, Top. Curr. Chem., 1986, 133, 83.
2 B. M. Trost, Top. Curr. Chem., 1986, 133, 3.
3 J. Bastide and O. Henri-Rousseau, in The Chemistry of the CarbonCarbon Triple Bond. Part 1, ed. S. Patai, Wiley, Chichester, 1978, p. 447.

4 J. D. Park, L. H. Wilson and J. R. Lacher, J. Org. Chem., 1963, 28, 1008; J. D. Park, J. R. Dick and J. H. Adams, J. Org. Chem., 1965, 30, 400; J. D. Park, R. J. McMurtry and R. Sullivan, J. Org. Chem., 1968, 33, 33.

5 R. W. Hoffmann and W. Schafer, Chem. Ber., 1972, 105, 2437; M. F. Semmelhack, S. Tomoda, H. Nagaoka, S. D. Boettger and K. M. Hurst, J. Am. Chem. Soc., 1982, 104, 747.

6 D. Bellus and B. Ernst, Angew. Chem., Int. Ed. Engl., 1988, 27, 797.
7 C. F. Huebner, L. Dorfman, M. M. Robison, E. Donoghue, W. G. Pierson and P. Strachan, J. Org. Chem., 1963, 28, 3134.

8 K. C. Brannock, R. D. Burpitt, V. W. Goodlett and J. G. Thweatt, J. Org. Chem., 1964, 29, 818.

9 B. B. Snyder, D. J. Rodini, R. S. E. Conn and S. Sealfon, J. Am. Chem. Soc., 1979, 101, 5283.
10 R. D. Clark and K. G. Untch, J. Org. Chem., 1979, 44, 248.
11 A. Quendo and G. Rousseau, Tetrahedron Lett, 1988, $29,6443$.
12 J. W. Scheeren, Recl. Trav. Chim. Pays-Bas, 1986, 105, 71.
13 M. L. Graziano and R. Scarpati, J. Chem. Soc., Perkin Trans. 1, 1985, 289.

14 M. L. Graziano and G. Cimminiello, Synthesis, 1989, 54.
15 H. W. Scheeren, A. J. R. Van Rossum and R. J. F. Nivard, Tetrahedron, 1983, 39, 1345.
16 D. H. Aue and D. Thomas, J. Org. Chem., 1975, 40, 2360.
17 C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 2nd edn., VCH, Weinheim, 1988.
18 E. Drent, Eur. Pat. Appl., EP 206 367/1986 (Chem. Abstr., 1987, 106, 177023t).
19 L. M. Jackman and S. Sternhell, Application of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, Pergamon Press, Oxford, 1969, p. 185.
20 C. D. Weis and T. Winkler, Helv. Chim. Acta, 1974, 57, 856.
21 R. Huisgen, Acc. Chem. Res., 1977, 10, 117; 199.
22 J. I. Dickstein and S. I. Miller, in The Chemistry of the CarbonCarbon Triple Bond. Part 2, ed. S. Patai, Wiley, Chichester, 1978, p. 813.

23 R. Huisgen, R. Schug and G. Steiner, Angew. Chem., Int. Ed. Engl., 1974, $13,81$.
24 S. M. McElvain, H. J. Anthes and S. H. Shapiro, J. Am. Chem. Soc., 1942, 64, 2525.
25 S. M. McElvain and R. McKay, J. Am. Chem. Soc., 1956, 78, 6086.
26 S. M. McElvain and C. L. Aldridge, J. Am. Chem. Soc., 1953, 75, 3987.

Paper 1/05626C
Received 5th November 1991
Accepted 27th January 1992

[^0]: * In the thermal $[2+2]$ cycloadditions the experimental and

